3.计算机指令

1. 计算机指令

     从软件工程师的角度来讲,CPU 就是一个执行各种计算机指令(Instruction Code)的逻辑机器。这里的计算机指令,就好比一门 CPU 能够听得懂的语言,我们也可以把它叫作机器语言(Machine Language)。不同的 CPU 能够听懂的语言不太一样。比如,我们的个人电脑用的是 Intel 的 CPU,苹果手机用的是 ARM 的 CPU。这两者能听懂的语言就不太一样。类似这样两种 CPU 各自支持的语言,就是两组不同的计算机指令集,英文叫 Instruction Set。这里面的“Set”,其实就是数学上的集合,代表不同的单词、语法。所以,如果我们在自己电脑上写一个程序,然后把这个程序复制一下,装到自己的手机上,肯定是没办法正常运行的,因为这两者语言不通。而一台电脑上的程序,简单复制一下到另外一台电脑上,通常就能正常运行,因为这两台 CPU 有着相同的指令集,也就是说,它们的语言相通的。一个计算机程序,不可能只有一条指令,而是由成千上万条指令组成的。但是 CPU 里不能一直放着所有指令,所以计算机程序平时是存储在存储器中的。这种程序指令存储在存储器里面的计算机,我们就叫作存储程序型计算机(Stored-program Computer)。

2. 汇编语言

    要让一段程序在一个 Linux 操作系统上跑起来,我们需要把整个程序翻译成一个汇编语言(ASM,Assembly Language)的程序,这个过程我们一般叫编译(Compile)成汇编代码。针对汇编代码,我们可以再用汇编器(Assembler)翻译成机器码(Machine Code)。这些机器码由“0”和“1”组成的机器语言表示。这一条条机器码,就是一条条的计算机指令。这样一串串的 16 进制数字,就是我们 CPU 能够真正认识的计算机指令。在一个 Linux 操作系统上,我们可以简单地使用 gcc 和 objdump 这样两条命令,把对应的汇编代码和机器码都打印出来。

    我们实际在用 GCC(GUC 编译器套装,GNU Compiler Collectipon)编译器的时候,可以直接把代码编译成机器码呀,为什么还需要汇编代码呢?原因很简单,你看着那一串数字表示的机器码,是不是摸不着头脑?但是即使你没有学过汇编代码,看的时候多少也能“猜”出一些这些代码的含义。
    因为汇编代码其实就是“给程序员看的机器码”,也正因为这样,机器码和汇编代码是一一对应的。我们人类很容易记住 add、mov 这些用英文表示的指令,而 8b 45 f8 这样的指令,由于很难一下子看明白是在干什么,所以会非常难以记忆。

3. 解析指令和机器码

    我们日常用的 Intel CPU,有 2000 条左右的 CPU 指令,一般来说,常见的指令可以分成五大类:

3.1 算术类指令。

    我们的加减乘除,在 CPU 层面,都会变成一条条算术类指令。

3.2 数据传输类指令。

    给变量赋值、在内存里读写数据,用的都是数据传输类指令。

3.3 逻辑类指令。

    逻辑上的与或非,都是这一类指令。

3.4 条件分支类指令。

    日常我们写的“if/else”,其实都是条件分支类指令。

3.5 无条件跳转指令。

    写一些大一点的程序,我们常常需要写一些函数或者方法。在调用函数的时候,其实就是发起了一个无条件跳转指令。

avatar

4. MIPS指令集

    不同的 CPU 有不同的指令集,也就对应着不同的汇编语言和不同的机器码。MIPS 是一组由 MIPS 技术公司在 80 年代中期设计出来的 CPU 指令集。

    MIPS 的指令是一个 32 位的整数,高 6 位叫操作码(Opcode),也就是代表这条指令具体是一条什么样的指令,剩下的 26 位有三种格式,分别是 R、I 和 J。

    R 指令是一般用来做算术和逻辑操作,里面有读取和写入数据的寄存器的地址。如果是逻辑位移操作,后面还有位移操作的位移量,而最后的功能码,则是在前面的操作码不够的时候,扩展操作码表示对应的具体指令的。

    I 指令,则通常是用在数据传输、条件分支,以及在运算的时候使用的并非变量还是常数的时候。这个时候,没有了位移量和操作码,也没有了第三个寄存器,而是把这三部分直接合并成了一个地址值或者一个常数。

    J 指令就是一个跳转指令,高 6 位之外的 26 位都是一个跳转后的地址。

avatar